CLINICAL MICROBIOLOGY
The definition of clinical microbiology as a branch of science dealing with the interrelation of macro- and microorganisms under normal and pathological conditions and in the dynamics of a pathological process with an account of the treatment till the clinical and/or complete recovery is presented.
Other definition of Clinical Microbiology

- The study of pathogenic microorganisms such as bacteria, fungi, parasites and viruses.
Objectives

- Identify key clinical symptoms and the microbial immunological conditions that characterize sepsis
- Describe microbiology’s role to deliver sepsis-related laboratory results and support Surviving Sepsis Campaigns
- Describe Medical Laboratory Scientists’ (MLS) training
- requirements for careers in medical microbiology laboratories
- Define current standards and limitations of blood culture
- methods and the premises for new diagnostic method
- development to support rapid de-escalation of antibiotics
Clinical microbiologists oversee...

- Operations to isolate and identify infectious organisms (bacteria, viruses, parasites, or fungi) from blood, urine, body fluid, sputum, wounds, or other specimens.

- Practices to provide crucial information that guides the selection of antimicrobial therapy for patients, as well as the proper specimen selection, collection, and culture of pathogenic microorganisms and normal flora.
- Services that are critical to the well-being of sick patients by enabling the correct diagnosis to be made
- MLS Personnel, highly trained professionals (board certified medical laboratory scientists) who make countless decisions each day that save lives an
Clinical Microbiology Laboratories

- CML are the centerpiece of infectious disease diagnosis and the cornerstone of infection control/prevention.

- Use laboratory techniques including culture, microscopic examination, biochemical, molecular and immunological tests.

- Identify the best course of antibiotic treatment by establishing which antibiotics will be most effective in combating the organism causing an infection.
Clinical Microbiology Subspecialties

- Bacteriology
- Virology
- Mycobacteriology
- Mycology
- Parasitology
- Serology
- Antimicrobial Testing
- Molecular Microbiology
Microbial Mechanisms of Pathogenicity
Pathogenicity - ability of pathogen to cause disease by overcoming the defenses of the host

Virulence - degree of pathogenicity

Virulence factors – the various traits or features that allow or enhance the microorganism’s ability to cause disease.

- Many properties that determine a microbe’s pathogenicity or virulence are unclear or unknown

- But, when a microbe overpowers the host’s defenses, disease results!
Portals of Entry

- To cause disease, most pathogenic bacteria must gain access to the host.
- 1. Mucus Membranes
- 2. Skin
- 3. Parenteral
1. Mucus Membranes

- A. Respiratory Tract
 - microbes inhaled into mouth or nose in droplets of moisture or dust particles
 - Easiest and most frequently traveled portal of entry
Common Diseases contracted via the Respiratory Tract

- Common cold
- Flu
- Tuberculosis
- Whooping cough
- Pneumonia
- Measles
- Strep Throat
- Diphtheria
Mucus Membranes

B. Gastrointestinal Tract

- microbes gain entrance thru contaminated food & water or fingers & hands

- most microbes that enter the G.I. Tract are destroyed by HCL & enzymes of stomach or bile & enzymes of small intestine
Common diseases contracted via the G.I. Tract

- Salmonellosis
 - *Salmonella sp.*
- Shigellosis
 - *Shigella sp.*
- Cholera
 - *Vibrio cholorea*
- Ulcers
 - *Helicobacter pylori*
- Botulism
 - *Clostridium botulinum*
Fecal - Oral Diseases

- These pathogens enter the G.I. Tract at one end and exit at the other end.
- Spread by contaminated hands & fingers or contaminated food & water
- Poor personal hygiene.
Mucus Membranes of the Genitourinary System - STD’s

Gonorrhea

Neisseria gonorrhoeae

Syphilis

Treponema pallidum

Chlamydia

Chlamydia trachomatis

HIV

Herpes Simplex II
Mucus Membranes

- D. Conjunctiva –
 - mucus membranes that cover the eyeball and lines the eyelid

- Trachoma
 - *Chlamydia trachomatis*
2nd Portal of Entry: Skin

- Skin - the largest organ of the body. When unbroken is an effective barrier for most microorganisms.

- Some microbes can gain entrance through openings in the skin: hair follicles and sweat glands
3rd Portal of Entry: Parenteral

- Microorganisms are deposited into the tissues below the skin or mucus membranes
- Punctures
- injections
- bites
- scratches
- surgery
- splitting of skin due to swelling or dryness
Preferred Portal of Entry

- Just because a pathogen enters your body it does not mean it’s going to cause disease.

- pathogens - preferred portal of entry
Preferred Portal of Entry

- *Streptococcus pneumoniae*
 - if inhaled can cause pneumonia
 - if enters the G.I. Tract, no disease

- *Salmonella typhi*
 - if enters the G.I. Tract can cause Typhoid Fever
 - if on skin, no disease
Number of Invading Microbes

- **LD₅₀** - Lethal Dose of a microbes toxin that will kill 50% of experimentally inoculated test animal
- **ID₅₀** - infectious dose required to cause disease in 50% of inoculated test animals
 - Example: **ID₅₀** for *Vibrio cholerae* - 10⁸ cells (100,000,000 cells)
 - **ID₅₀** for Inhalation Anthrax - 5,000 to 10,000 spores ?????
How do Bacterial Pathogens penetrate Host Defenses?

1. Adherence - almost all pathogens have a means to attach to host tissue

Binding Sites

- adhesins
- ligands
Adhesins and ligands are usually on Fimbriae

- *Neisseria gonorrhoeae*
- *ETEC* (Entertoxigenic E. coli)
- *Bordetella pertussis*
2. Capsules

- Prevent phagocytosis
- Attachment
- *Streptococcus pneumoniae*
- *Klebsiella pneumoniae*
- *Haemophilus influenzae*
- *Bacillus anthracis*
- *Streptococcus mutans*
- *Yersinia pestis*
3. Enzymes

- Many pathogens secrete enzymes that contribute to their pathogenicity
A. Leukocidins

- Attack certain types of WBC’s
- 1. Kills WBC’s which prevents phagocytosis
- 2. Releases & ruptures lysosomes
 - lysosomes - contain powerful hydrolytic enzymes which then cause more tissue damage
B. Hemolysins - cause the lysis of RBC's

Streptococci
1. Alpha Hemolytic Streptococci

- secrete hemolysins that cause the incomplete lysis or RBC’s
2. Beta Hemolytic Streptococci

- secrete hemolysins that cause the complete lysis of RBC’s
3. Gamma Hemolytic Streptococci - do not secrete any hemolysins
C. Coagulase - cause blood to coagulate

- Blood clots protect bacteria from phagocytosis from WBC’s and other host defenses

- Staphylococci - are often coagulase positive
 - boils
 - abscesses
D. Kinases - enzymes that dissolve blood clots

- 1. Streptokinase - Streptococci
- 2. Staphylokinase - Staphylococci

- Helps to spread bacteria - Bacteremia

- Streptokinase - used to dissolve blood clots in the Heart (Heart Attacks due to obstructed coronary blood vessels)
E. Hyaluronidase

- Breaks down Hyaluronic acid (found in connective tissues)
- “Spreading Factor”
- mixed with a drug to help spread the drug through a body tissue
F. Collagenase

- Breaks down collagen (found in many connective tissues)

- *Clostridium perfringens* - Gas Gangrene
 - uses this to spread through muscle tissue
G. Necrotizing Factor

- causes death (necrosis) to tissue cells

“Flesh Eating Bacteria”
Necrotizing fasciitis
Summary of How Bacterial Pathogens Penetrate Host Defenses

1. Adherence
2. Capsule
3. Enzymes
 - A. leukocidins
 - B. Hemolysins
 - C. Coagulase
 - D. Kinases
 - E. Hyaluronidase
 - F. Collagenase
 - G. Necrotizing Factor
4. **Toxins**

- Poisonous substances produced by microorganisms
- Toxins - **primary factor** - pathogenicity
- 220 known bacterial toxins
 - 40% cause disease by damaging the Eukaryotic cell membrane
- **Toxemia**
 - Toxins in the bloodstream
2 Types of Toxins

- 1. Exotoxins
 - secreted outside the bacterial cell

- 2. Endotoxins
 - part of the outer cell wall of Gram (-) bacteria
Exotoxins

- Mostly seen in Gram (+) Bacteria
- Most gene that code for exotoxins are located on plasmids or phages
3 Types of Exotoxins

- 1. Cytotoxins
 - kill cells

- 2. Neurotoxins
 - interfere with normal nerve impulses

- 3. Enterotoxins
 - effect cells lining the G.I. Tract
Response to Toxins

- If exposed to exotoxins: antibodies against the toxin (antitoxins)
- Exotoxins inactivated (heat, formalin or phenol) no longer cause disease, but stimulate the production of antitoxin
 - altered exotoxins - Toxoids
- Toxoids - injected to stimulate the production of antitoxins and provide immunity
Example: DPT Vaccine

- **D** - Diphtheria
 - *Corynebacterium diphtheriae*

- **P** - Pertussis
 - *Bordetella pertussis*

- **T** - Tetanus
 - *Clostridium tetani*

DPT - Diphtheria Toxoid

Pertussis Antigen

Tetanus Toxoid
End of Lec-1
Required Immunizations in Illinois

1. Diphtheria
2. Pertussis
3. Tetanus
4. Measles
5. Mumps
6. Rubella
 - German Measles
7. Polio
8. Hib
9. Hepatitis B
10. Chicken Pox

- Corynebacterium diphtheriae
- Bordetella pertussis
- Clostridium tetani
- Measles virus
- Mumps virus
- Rubella virus
- Polio virus
- Haemophilus influenzae
- Hepatitis B Virus
- Varicella-zoster virus
Type of Vaccines

- D
 - Toxoid

- P
 - Antigen
 - Toxoid

- T
 - Attenuated

- M
 - Attenuated

- R
 - Attenuated

- Polio
 - Salk
 - Sabin

- Hib

- HBV
 - Recombinant vaccine (antigen) yeast
 - Capsid produced by genetically engineered yeast

- Chicken Pox

- IPV — Inactivated Polio virus (Killed) 1953
- OPV — Oral Polio vaccine (attenuated) 1964
- Conjugated vaccine

- Attenuated
Most genes that code for exotoxins - plasmids or phages

- Lysogenic convergence
- Diphtheria
- Cytotoxin inhibits protein synthesis - resulting in cell death
- Pseudomembrane
 - fibrin, dead tissue, bacterial cells
Lysogenic Convergence

- Scarlet Fever
- *Streptococcus pyogenes*
 - lysogenic convergence
- prophage
 - cytotoxin - damages blood capillaries and results in a skin rash
 - Strep Throat with a rash
Diseases caused by Neurotoxins

- Botulism
 - *Clostridium botulinum*
 - Gram (+), anaerobic, spore-forming rod, found in soil
 - works at the neuromuscular junction
 - prevents impulse from nerve cell to muscle cell
 - results in muscle paralysis
A Once-Feared Poison Could Become the Next Billion-Dollar Drug. Is It Safe? And Why Are We So Vain?

THE BUSINESS OF

BOTOX
Tetanus (Lock Jaw)

- *Clostridium tetani*
- Gram (+), spore-forming, anaerobic rod
- neurotoxin acts on nerves, resulting in the inhibition of muscle relaxation
- tetanospasmin - “spasms” or “Lock Jaw”
Diseases caused by Enterotoxins

- Cholera
 - *Vibrio cholerae*
 - Gram (-) comma shaped rods
Cholera toxin

- Converts ATP into cAMP
- causes cells to excrete Cl\(^-\) ions and inhibits absorption of Na\(^+\) ions
 - Electrolyte imbalance
 - H\(_2\)O leaves by osmosis
 - H\(_2\)O Loss (Diarrhea)
Severe cases, 12 - 20 liters of liquid lost in a day

- Untreated cases - Mortality Rate about 50%
- Mortality may be reduced to about 1%
 - administering fluids and electrolytes
EHEC (Enterohemorrhagic E. coli)

- E. coli (0157:H7)
- enterotoxin causes a hemolytic inflammation of the intestines
- results in bloody diarrhea
 - Toxin
 - alters the 60S ribosomal subunit
 - inhibits Protein Synthesis
 - Results in cell death
 - lining of intestine is “shed”
 - Bloody Diarrhea (Dysentary)
Endotoxins - part of the Gram (-) Bacterial cell wall

- LPS (Lipopolysaccharides)
 - O Antigen
 - Lipid A
- Lipid A - Toxin portion of the LPS
 - responsible for Fever that is associated with many Gram (-) Bacterial infections
 - Gram (-) cells are “digested” endotoxins are released - fever
 - Antibiotics